AVIONICS COMPUTER RESOURCE (ACR)

Bob Patterson
Chairman RTCA SC-182

Rockwell Collins

WHAT IS AN ACR?

- → A General Purpose Computing Platform Optimized for Avionics Applications
 - > Defined Application / Programming Interface
 - > Partitioning / Protection
 - Health Monitoring
- → Includes "Device Drivers" and Physical Layer Interface With Aircraft
- → Analogous to:
 - > Pentium + Windows or
 - > Power PC + MAC os

ACR_Tutorial 7/8-11/2000 2

WHO WANTS AN ACR?

- → Air Transport Operators
 - Extension of AEEC Integrated Modular Avionics
- → General Aviation
 - > Interest from AGATE

ACR_Tutorial 7/8-11/2000

WHAT BENEFIT DOES IT OFFER?

- → Opportunity to Normalize Function and Operation Across a Fleet of Multiple Aircraft Types
- → Flexibility for Frequent Configuration Changes
- → Reduction in Certification Effort of Re-Used Components
- → Shorter Development Cycle Time
- → Economy of Scale for Software Developer
- → Economy of Scale for Hardware Developer

ACR_Tutorial 7/8-11/2000

MORE BENEFITS

- → Open System Concept
 - Independent Development of Platform and Application Programs
- → Draws Technology from Computer Industry
- Appliance Approval Independent of Aircraft Installation

ACR_Tutorial 7/8-11/2000 5 Rockwell Collins

RTCA SC-182 CHARTER / STATUS

- → Requested by Air Transport Operators
- → Task: Prepare MOPS for an ACR
- → 8/99: Completed Draft MOPS
- → EUROCAE Changed Title to, "Requirements Specification for ACR"
- → 2/00: ED-96 Adopted
- → 6/00: DO-255 Adopted

ACR_Tutorial 7/8-11/2000 6

SC-182 CHALLENGE

- → Specify ACR Characteristics Sufficient for a Certification Basis
- Remain Flexible to Accommodate Computer Technology Advances

ACR_Tutorial 7/8-11/2000 Rockwell Collins

SC-182 COMPROMISE

- → The Requirements Specification for ACR Is a "Specification for a Specification"
 - > Specific Attributes & Services Are Mandated
 - > Extensions, Interrupts and Fault Tolerance Are Allowed
- → API, Performance & Capacity Are Declared By the ACR Supplier
 - > A Data Sheet Is Mandated
 - Assurance of Data Sheet Information Is Mandated
 - > DO-160 and DO-178 Compliance is Mandated

ACR_Tutorial 7/8-11/2000 8

SECTION 1

→ Introduction

- Draws Attention to the Unusual Nature of the Document (As Opposed to a Traditional MOPS)
- Distinguishes Between the Platform and Application Software
- Acknowledges That Each Integration of Platform and Application Software Must be Evaluated In the Context of an Aircraft Certification

ACR_Tutorial 7/8-11/2000

SECTION 2

- → Requirements and Qualification
 - > Stipulates:
 - Data Sheet Required
 - Mandatory Attributes and API Services
 - Declaration of Performance and Capacity
 - Assurance of Data Sheet Values Required
 - > Allows:
 - Extended API Services
 - Interrupts
 - Fault Tolerance

ACR_Tutorial 7/8-11/2000 10

SECTION 2

- Mandated Attributes
 - > Defined API
 - > Deterministic Resource Allocation
 - > Isolation Between Applications and Core S/W
 - > Isolation Between Applications
 - > Compliance With DO-178B
 - Level Must be Declared

ACR_Tutorial 7/8-11/2000 11 Rockwell

SECTION 2

- → Mandated API Services
 - > Partition Management
 - > Process Management
 - > Time Management
 - > Memory Management
 - > Communication
 - > Health Monitoring
 - > Field Loadable
- → Data Sheet Expectations are Given for Each Service

ACR_Tutorial 7/8-11/2000 12

SECTION 2

- → Allowable Capability
 - > Extended API Services
 - > Interrupts
 - > Fault Tolerance
- → Data Sheet Expectations are Given for Extended Services

ACR_Tutorial 7/8-11/2000 13 Rockwell Collins

SECTION 2

- → Performance (& Capacity) Parameters
 - > CPU Type, Instruction Set, Cache
 - > Partitions; Number, Duration, Jitter
 - > Context Switch Time
 - > Memory; Allocation, Addressing, Access Time
 - Communication; Type, Quantity, Capacity, Rate, Delay
 - > I/O; Type, Quantity, Queuing, Propagation Delay
 - > Power On / Interrupt Characteristics
- → Data Sheet Expectations are Given for each Parameter

ACR_Tutorial 7/8-11/2000 14

SECTION 2

- → Environmental Qualification
 - > Compliance With DO-160D Is Required
 - > Categories Must be Declared
 - Testing Must Assure Acceptable Operation and Performance of System Services, I/O Interfaces, Partition Integrity and Allocation of Resources to Partitions.

ACR_Tutorial 7/8-11/2000 15 Rockwell Collins

SECTION 2

- → Function and Operational Assurance
 - Objectives Established for Each Service and Performance Parameter
 - > Test and / or Analysis Allowed

ACR_Tutorial 7/8-11/2000 16

SECTION 3

- → Integration, Installation and Certification
 - Highlights Relationships Between Platform Provider, Application Provider(s), Integrator and Regulatory Authority
 - Requires Consideration of ACR Performance With the Mix of Applications Hosted
 - > Requires System Level Safety Assessment
 - Requires Analysis of Resource Quantity, Allocation, and Contention

ACR_Tutorial 7/8-11/2000

SECTION 4

- → Certification of Modified Systems
 - Gives Credit for "Qualification" of ACR Platform Attributes
 - Suggests That Previously Approved Data be Re-Used Where Unchanged

ACR_Tutorial 7/8-11/2000 19 Rockwell Collins

ANNEX A

- → Data Sheet for ACR Attributes
 - > Tracks Requirement Paragraphs In Section 2
 - Leads the ACR Supplier to Describe the Implementation
 - > Leads the ACR Supplier to Site Assurance

ACR_Tutorial 7/8-11/2000 20

DATA SHEET SAMPLE

Group	ID	Attribute	Implementation	Means of Verification	
Process Management Section 2.1.1.2 / 2.5.1.2	SRV3.1	Obtain the ID of the current process	GET_PROCESS_ID		
	SRV3.2	Obtain the status of the current process	GET_PROCESS_STATUS		
	SRV3.3	Define a new process	CREATE_PROCESS		
	SRV3.4	Set the priority of the current process.	SET_PRIORITY		
	SRV3.5	Suspend a process	SUSPEND_SELF SUSPEND		
	SRV3.6	Reactivate a suspended process	RESUME		
	SRV3.7	Stop/halt a process	STOP_SELF STOP		
	SRV3.8	Activate a process	START		
	SRV3.9	Prevent the current process from being pre-empted (turn preemption off)	LOCK_PREEMPTION		
	SRV3.10	Preemption on	UNLOCK PREEMPTION		

ACR_Tutorial 7/8-11/2000 21 Rockwell Collins

ANNEX B

- → Application Interface Specification Example
 - > Drawn From ARINC Specification 653
 - > Modified to Support SC-182 Notion of API
 - Intended to Indicate the Depth of Specification Expected in the ACR Data Sheet

ACR_Tutorial 7/8-11/2000 22

ANNEX C & D

- → Glossary of Terms
- → List of Acronyms

ACR_Tutorial 7/8-11/2000 23 Rockwell Collins

ANNEX E

- → Re-Use Benefits
 - > Illustrates 3 Follow-on Certification Scenarios
 - Addition of New Application
 - "Port" Application Set to Another ACR
 - Install ACR & Applications in Another Aircraft Model
 - > Examines DO-178B Objectives
 - Suggests Where Life Cycle Data May Be Re-Usable

ACR_Tutorial 7/8-11/2000 24

RE-USE SAMPLE

Table E-1: Verification of Verification Process Results (COMMENTARY)

(reference to DO-178B / ED-12B, table A-7)

	Objectives			Applicability By SW Level			Degree of reuse / comments		
	Description	Ref.	A	В	С	D	Case 1 Add an application	Case 2 Change ACR platform	Case 3 Change aircraft
1	Test procedures are correct.	6.3.6b	•	0	0		R	PR The test set-up may have to change	R
2	Test results are correct and discrepancies explained.	6.3.6c	•	0	0		R	NR	R
3	Test coverage of high-level requirements is achieved	6.4.4.1	•	0	O	0	R	NR	R
4	Test coverage of low-level requirements is achieved	6.4.4.1	•	0	0		R	NR	R
5	Test coverage of software structure (modified condition/decision) is achieved.	6.4.4.2	•				R	NR	R
6	Test coverage of software structure (decision coverage) is achieved.	6.4.4.2a 6.4.4.2b	•	•			R	NR	R
7	Test coverage of software structure (statement coverage) is achieved.	6.4.4.2a 6.4.4.2b	•	•	0		R	NR	R
8	Test coverage of software structure (data coupling and control coupling) is achieved.	6.4.4.2c	•	•	0		R	NR	R

R = Reusable: Life cycle data from initial approval is unchanged and reusable for follow-on certification

PR = Partially Reusable: Changes to life cycle data from initial approval must be evaluated during follow-on certification NR = Not Reusable: Life cycle data from initial approval is not applicable for follow-on certification

ACR Tutorial

7/8-11/200 26

